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Several researchers have reported numerous measurements on ultrasonic velocity as a function
of temperature and pressure using various experimental techniques. A large amount of
experimental data is required in order to obtain accurate results for the chemical substances
used. The present article explores the evaluation of ultrasonic velocity as a function of
molecular weight, temperature and pressure using an artificial neural network (ANN) in six
refrigerants. The network so developed predicts the ultrasonic velocity successfully. Statistical
analysis of the results was performed using standard deviation (%) and relative average
deviation. The correlation coefficient in our analysis was found to be 0.9999. The trained
weights, obtained from ANN, are further employed to form equations to predict ultrasonic
velocity at other temperatures and pressures.

Keywords: Ultrasonic velocity; Pressure dependence; Refrigerants; Artificial neural network;
Leverberg–Marquardt algorithm; Feed forward network

1. Introduction

Many researchers [1,2] have studied the effect of pressure on the ultrasonic velocity. The
effect has been explored by Smith and Lawson [3] and by Litovitz and Carnevale [4].
It is observed that pressure and temperature have a strong effect on the ultrasonic
velocity, which is associated with the thermodynamic behavior of the fluid [5], and
shares a very complex relationship. According to Erol Arcaklioğlu [6], refrigeration
is one of the most important industrial applications, and it is usually based on
chlorofluorocarbon (CFC) compounds. Moreover, the number of chemical substances
to replace CFCs is very high and considerable experimental work as well as new models
are required. Keeping all these points in mind, in the present study, we have formed the
neural network having three inputs and one output. Data of six refrigerants namely
trichlorofluoromethane (CCl3F), 1,1-dichloro-2,2,2-trifluoroethane (C2HCl2F3), mono-
chlorodifluoromethane (CHClF2), monochloropentafluoroethane (CClF2-CF3),
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dichlorotetrafluoroethane (C2Cl2F4) and bromotrifluoromethane (CBrF3), determined
on sing around technique at 2MHz have been collected from the literature [7–10].

2. Theory

Motivated by the functioning of neurons, scientists have applied the concept of artificial

neural network (ANN) to complex problems which are difficult to solve using
traditional methods [11–13]. The artificial neuron accepts any number of inputs

simultaneously. Using weights, these inputs are connected to processing element, where
the summation of these weighted inputs is taken. With the help of transfer functions
these are processed and converted into the output.

3. Training procedure

The learning procedure of the ANN is completely a trial and error method [14]. The

training of ANN requires large training data set. The ANN model has presented
the known values of input/output vector pairs, which are as shown in table 1.

Table 1. Training data.

Sample
Molecular
weight (g) Temperature (K) Pressure (MPa)

Ultrasonic
velocity (m s�1) Total sets

(1) CCl3F 137.37 298.15 0.1056–74.77 743.5–1029.1 55
333.15 0.3111–74.41 627.5–954.6
353.15 0.5192–73.86 557.4–914.1

(2) C2HCl2F3 152.93 283.15 0.0506–75.50 745.7–1044 93
293.15 0.0756–74.01 711–1015.1
298.15 0.0913–74.44 693.7–1006.2
303.15 0.1094–75.59 676.4–999.1
373.15 0.7871–75.40 440.9–864.4

(3) CHClF2 86.48 288.15 0.680–49.90 599–889 115
293.15 0.910–50.71 574.5–880.2
298.15 1.049–50.90 550–866.8
303.15 1.196–51.05 525.1–851.7
323.15 1.941–50.02 424.5–793.9

(4) CClF2-CF3 154.48 293.15 0.801–49.04 373.1–711 121
298.15 0.911–49.65 352–703
303.15 1.039–49.16 329.9–690.5
308.15 1.176–49.66 309.2–682.6
313.15 1.333–50.88 291.2–677.7
323.15 1.676–50.09 255.2–654.9

(5) C2Cl2F4 170.92 283.15 0.128–50.20 601.6–853.2 96
293.15 0.181–49.46 571.8–830.7
298.15 0.214–50.66 550.8–820.1
313.15 0.338–50.60 501.9–791.3
323.15 0.447–51.17 467.3–772.4

(6) CBrF3 148.914 293.15 1.428–52.07 326.1–649.9 75
298.15 1.612–51.03 309.1–635.8
313.15 2.273–52.44 258.5–614.5
323.15 2.915–50.69 223.5–589.7
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Neural network learns through the patterns of the data presented to it. The three-
layered feedforward network is selected with supervised learning, i.e. network with bias
values. The three layers are input layer, hidden layer and output layer. The training data
is presented through the input layer. Here, we have taken molecular weight (g),
temperature (K) and pressure (MPa) as input parameters and ultrasonic velocity (m s�1)
as the output parameter. The input and output parameters are stored in a file as a
column vector. The hidden layer of feedforward network consists of 10 logsig transfer
functions. It is a continuous and differentiable transfer function. The range of logsig is
(0,þ1). It takes the form,

fðZÞ ¼
1

1þ expð�ZÞ
ð1Þ

where Z is the weighted sum of the inputs.
The output layer consists of one purelin transfer function whose range is (�1,þ1).

The model is trained using the Leverberg–Marquardt learning algorithm [15]. The
network has calculated the output vector for each input vector. An error term is
evaluated by comparing the calculated output vector and the actual output vector
called target. The performance function selected is the sum squared error. Using the
error term, the weights and biases are updated to decrease the error. This procedure
is repeated until the error goal of 1� 10�4 and 2000 epochs is reached. The
performance of the network is 0.00343387. The program script is written and executed
in MATLAB 6.5.

4. Results and discussions

After training ANN, we have tested the network by giving data, which the network has
not received earlier. During testing, to study the behavior of ultrasonic velocity as a
function of pressure and temperature, we have used the trained weights and biases
saved in the file (table 2).

In order to calculate ultrasonic velocity at various temperatures and pressures of the
six refrigerants, mathematical equations are derived from the trained weights and the
activation functions used in the ANN. As from statistical analysis, the results obtained
from testing and training are extremely good, hence the above equations thus obtained

Table 2. Trained weights obtained through Leverberg–Marquardt algorithm.
Zi ¼ W1i �MþW2i � TþW3i � Pþ B1i.

S. No. W1i W2i W3i B1i

1 �18.44345 0.3965664 �0.3583145 9.241836
2 �2.547895 �3.455291 0.5432987 0.7701218
3 �5.872633 46.59074 �5.146459 �11.89008
4 �6.930737 113.5282 7.917632 �42.98610
5 �10.80257 0.06526527 �0.05090918 2.882611
6 �6.908178 43.65352 1.736176 �10.98907
7 40.73891 �0.2563958 0.1221067 �8.871200
8 3.026567 120.3034 6.670119 �34.57744
9 �0.1561430 24.01910 �9.124814 �8.440030

10 6.875672 15.97496 3.985813 �8.197750
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are accurate. In the above formulation, 10 pairs of equations are required as ANN has
10 hidden neurons. In the output neuron, only one summation function is used as there
is only one neuron which corresponds to the ultrasonic velocity. Molecular weights are

normalized to get the data within the range of (�1, 1).

G ¼
2� ðM�MminÞ

Mmax �Mmin
� 1 ð2Þ

In our application, the maximum value for molecular weight is 170.92 and the
minimum value is 86.48. Temperature values are normalized as t¼T/1000, whereas
pressure values are normalized as p¼P/100.

Z1 ¼ �18:44345Gþ 0:3965664t� 0:3583145pþ 9:241836 ð3Þ

S1 ¼
1

1þ e�Z
1

ð4Þ

Z2 ¼ �2:547895G� 3:455291tþ 0:5432987pþ 0:7701218 ð5Þ

S2 ¼
1

1þ e�Z
2

ð6Þ

Z3 ¼ �5:872633Gþ 46:59074t� 5:146459p� 11:89008 ð7Þ

S3 ¼
1

1þ e�Z
3

ð8Þ

Z4 ¼ �6:930737Gþ 13:5282tþ 7:917632p� 42:98610 ð9Þ

S4 ¼
1

1þ e�Z
4

ð10Þ

Z5 ¼ �10:80257Gþ 0:06526527t� 0:05090918pþ 2:882611 ð11Þ

S5 ¼
1

1þ e�Z
5

ð12Þ

Z6 ¼ �6:908178Gþ 43:65352tþ 1:736176p� 10:98907 ð13Þ

S6 ¼
1

1þ e�Z
6

ð14Þ

Z7 ¼ 40:73891G� 0:2563958tþ 0:1221067p� 8:871200 ð15Þ

S7 ¼
1

1þ e�Z
7

ð16Þ

Z8 ¼ 3:026567Gþ 120:3034tþ 6:670119p� 34:57744 ð17Þ

S8 ¼
1

1þ e�Z
8

ð18Þ
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Z9 ¼ �0:1561430Gþ 24:01910t� 9:124814p� 8:440030 ð19Þ

S9 ¼
1

1þ e�Z
9

ð20Þ

Z10 ¼ 6:875672Gþ 15:97496tþ 3:985813p� 8:197750 ð21Þ

S10 ¼
1

1þ e�Z
10

ð22Þ

The terms S1–S10 and Z1–Z10 represent the summation and activation functions of
each neuron of the hidden layer respectively.

Z11 ¼ 9:768024S1 þ 5:525538S2 � 0:09376878S3 þ 0:04508393S4

� 73:69815S5 þ 0:1542588S6 � 59:32642S7 � 0:04497778S8

� 0:1876630S9 þ 0:2297970S10 þ 59:17101 ð23Þ

Ultrasonic velocity ¼ Z11 � 2000 ð24Þ

Using the above equations, we get the ultrasonic velocities of the six refrigerants under
study. For statistical analysis which is necessary as it indicates predictive capability of
the network, we have evaluated standard deviation (%) [8], relative average deviation
as follows:

Standard deviation ð%Þ ¼ 100�
1

n

X ðUðExpt:Þ �UðANNÞÞ

UðANNÞ

� �2
( )1=2

ð25Þ

Relative average deviation ¼
1

n

X UðExpt:Þ

UðANNÞ

� 1

����
����

� �
ð26Þ

where n is the number of data points used.
In our study, the results are satisfactory as relative average deviation is approaching

zero and standard deviation is in between 0.35 and 2.71%. Statistical analysis of the
results is presented in table 3.

The network generalizes well in case of C2HCl2F3, as the training range for the
temperature is 288.15–323.15K, the network predicted ultrasonic velocities well at
283.15K. Also in case of CClF2–CF3, the network extrapolated ultrasonic velocities
at 283.15K, 288.15K with good accuracy as seen from the table 3. In all the six
refrigerants, it is observed that, the velocities predicted on tested temperatures
follow the trend as a function of temperature and pressure; it increases with
increase in pressure but decreases with increase in temperature. Moreover, near the
saturated pressure, the results are not very satisfactory in case of all the refrigerants
under study. This may be due to unsteady state behavior of the refrigerants near
the saturated vapor pressure as the temperatures taken for comparison as well as
study are approaching the critical temperatures of the refrigerants respectively.
This is reflected in the standard deviation (%) and relative average deviation in
table 3. At temperatures 310.15, 325.15 and 360.15K, the experimental values
of ultrasonic velocities with varying pressures are not available. With the help
of trained weights and biases, the respective values are predicted. In case of
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CHClF2 and C2Cl2F4, it is observed that though C2Cl2F4 has higher molecular
weight than CHClF2, but at pressure 14.15MPa their ultrasonic velocities are
similar. Moreover, the ultrasonic values of C2Cl2F4 above the pressure 14.15MPa
decreases as compared with the velocity values of CHClF2 with increasing pressure
(see figures 1–3).

Table 3. Statistical analysis of 10 neurons in the hidden layer.

Sample Temperature (K)
Correlation
coefficient

Standard
deviation (%)

Relative average
deviation

(1) CCl3F 313.15 0.999972 0.658 0.005054

(2) C2HCl2F3 313.15 0.999984 1.544 0.003196
323.15 0.999845 2.235 0.012258
333.15 0.999845 2.168 0.011537
343.15 0.999845 2.235 0.012258
353.15 0.999741 2.271 0.017086
363.15 0.999886 1.483 0.011500

(3) CHClF2 283.15 0.999989 0.366 0.003456
308.15 0.999998 0.427 0.002051
313.15 0.999998 0.745 0.001220
318.15 0.999992 0.627 0.003825

(4) CClF2-CF3 283.15 0.999936 1.415 0.008506
288.15 0.999992 1.078 0.002554
318.15 0.999998 1.148 0.001316

(5) C2Cl2F4 303.15 0.999998 0.355 0.001583

(6) CBrF3 283.15 0.999794 2.718 0.018127
303.15 0.999999 1.043 0.001522

0 10 20 30 40 50
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550
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800
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950 T = 310.15 K
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P (MPa)

CHClF2
CCl3F
CBrF3
C2HCl2F3
CClF2-CF3
C2Cl2F4 

Figure 1. Plot of ultrasonic velocity, U vs. pressure, P, in CCl3F, C2HCl2F3, CHClF2, CClF2-CF3, C2Cl2F4

and CBrF3 at 310.15K.
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5. Conclusions

The artificial neural network seems to be working as a powerful tool to predict ultrasonic
velocity in refrigerants at different temperatures and pressures. In the present article,
ultrasonic velocity as a function of pressure and temperature is studied. Equations
obtained from ANN are incorporated to obtain ultrasonic velocity within the range
taken up for training. The correlation coefficient 0.9999, reflects the higher accuracy
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Figure 2. Plot of ultrasonic velocity, U vs. pressure, P, in CHClF2, CBrF3, CClF2-CF3 and C2Cl2F4

at 325.15K.
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Figure 3. Plot of ultrasonic velocity, U vs. pressure, P, in CCl3F and C2HCl2F3 at 325.15K.
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of the present ANN, but fails to predict the exact value of the ultrasonic velocity in case of
CClF2-CF3 at saturated vapor pressure as it is a mathematical tool having no sense of the
physical system. The error in the experimental value could be one of the reasons.

Nomenclature

Symbols

ANN artificial neural network
M molecular weight
T temperature in K
P pressure in Mpa
t normalized value of temperature
p normalized value of pressure

Mmax maximum value of molecular weight
Mmin Minimum value of molecular weight

G normalized variable of molecular weight
U(Expt.) experimental value of ultrasonic velocity
U(ANN) Predicted value of ultrasonic velocity

n number of data used

Subscript

Expt. experimental value
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